Causal analysis with Chain Event Graphs
نویسندگان
چکیده
منابع مشابه
Learning Causal AMP Chain Graphs
Andersson-Madigan-Perlman chain graphs were originally introduced to represent independence models. They have recently been shown to be suitable for representing causal models with additive noise. In this paper, we present an algorithm for learning causal chain graphs. The algorithm builds on the ideas by Hoyer et al. (2009), i.e. it exploits the nonlinearities in the data to identify the direc...
متن کاملPropagation using Chain Event Graphs
A Chain Event Graph (CEG) is a graphial model which designed to embody conditional independencies in problems whose state spaces are highly asymmetric and do not admit a natural product structure. In this paer we present a probability propagation algorithm which uses the topology of the CEG to build a transporter CEG. Intriungly,the transporter CEG is directly analogous to the triangulated Baye...
متن کاملBayesian Representations Using Chain Event Graphs
Bayesian networks (BNs) are useful for coding conditional independence statements between a given set of measurement variables. On the other hand, event trees (ETs) are convenient for representing asymmetric structure and how situations unfold. In this paper we report the development of a new graphical framework for discrete probability models called the Chain Event Graph (CEG). The class of CE...
متن کاملA Separation Theorem for Chain Event Graphs
Bayesian Networks (BNs) are popular graphical models for the representation of statistical problems embodying dependence relationships between a number of variables. Much of this popularity is due to the d-separation theorem of Pearl and Lauritzen, which allows an analyst to identify the conditional independence statements that a model of the problem embodies using only the topology of the grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 2010
ISSN: 0004-3702
DOI: 10.1016/j.artint.2010.05.004